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Abstract— The goal of this paper is to develop a novel
moving horizon optimization modeling method of driver’s car-
following behavior based on hidden Markov model, which could
effectively mimic driver’s car-following process and driving
characteristic. First, the analysis of relation between the driver’s
driving behavior and Markov random process is proposed,
and the result of driver’s desired driving behavior has the
Markov property is proven. Then, a modeling framework with
moving horizon optimization characteristic is presented, includ-
ing the preview and perception module, prediction module,
optimization module. In this framework, the hidden Markov
model of driver’s car-following behavior is given by taking the
longitudinal acceleration as the hidden state and time headway
as the output state. To obtain the longitudinal acceleration
command, the optimization algorithm is used by maximizing
the posterior probability. Finally, based on the NGSIM data
set, the parameters of hidden Markov model are identified by
the Baum-Welch algorithm, and the effectiveness and accuracy
of proposed HMM-based modeling method are also discussed
from the closed-loop responses of certain typical drivers.

I. INTRODUCTION

Cyber-Physical Systems are multi-dimensional complex
feedback systems, which expand the interaction between the
cyber and physical worlds through the communication, com-
puting and control technologies, and possibly with humans
in the loop[1]. Intelligent transportation systems (ITS) as the
special Cyber-Physical Systems have earned the sustained at-
tention and interests in driver-oriented intelligent vehicles[2],
which are motivated by their potentials for enhancements
of driving safety, comfortable and efficiency. Understanding
and modeling of human driving behavior under the complex
driving scenarios became important issues to be studied, and
received continuous interest in recent years[3,4].

The car-following characteristic is one of the main be-
haviors of human drivers in vehicle manipulation. The de-
velopment of accurate driver’s car-following behavior model
could effectively understand the driver’s driving process and
mimic the driver’s control action. Many longitudinal driver
models have been presented in the previous researches. In
[5], a “follow the leader model” was addressed, and the aim
of the driver was to maintain a following distance from the

leading vehicle. Based on the assumption that the driver’s
desired braking and acceleration rates were constrained, in
[6], a new switching vehicle speed model was constructed for
the following vehicle, and the driver’s characteristics were
represented by the parameters of model. In [7], to evalu-
ate the performance of adaptive cruise control systems, an
accurate longitudinal human driving model was developed,
and six driver models were evaluated based on two selected
databases. The research results illustrate that the Gipps
model[6] was the most promising one, and a modified version
of the model was also suggested and implemented in a
microscopic traffic simulator, whose behavior was consistent
with the macroscopic traffic one very well.

In the actual driving process, human drivers do not behave
deterministically, some stochastic uncertainties were also
exhibited[8]. This property attracts many researchers’ atten-
tions. In [9], An errorable car-following driver model was
presented and modeled as a random process. To analyze and
mimic the driver’s driving behavior, the stochastic process
method was applied, and the Road-Departure Crash-Warning
System Field Operational Test data has been used to identify
the model parameters and validate its effectiveness. From the
results of a car-following experiment, it is shown that in [10],
the driver’s driving behavior can be represented by a simple
scheme: the acceleration a(t) is held approximately constant
for a certain time interval, followed by a jump to a new
acceleration. It also illustrates that the driver’s behavior has
deterministic and stochastic components[11].

In the process of driver’s car-following, usually the vehicle
movements can be observed and recorded, while the driver’s
behavior within vehicles can not be obtained directly. To
derive unobservable driver behaviors, many modeling meth-
ods based on hidden Markov model (HMM) were developed.
In [12], a HMM-based driver behavior model with layered
structure was proposed. Meanwhile, the identification and e-
valuation algorithms of bad driving behavior were presented.
In [13], HMM was also used to mimic the driver’s various
behaviors when driving at the crossing. To predict and
simulate the driver’s driving characteristics, the Intersection
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Driver Support Project data was applied to evaluate the
parameters of HMM. In [14], a HMM with two layers has
been given to identify the driver’s intention and predict the
driving behavior. The effectiveness and accuracy of proposed
HMM were proved by the test method of real time driving
simulation.

Model predictive control (MPC)[15,16] and stochastic mod-
el predictive control (SMPC) have been increasingly imple-
mented for vehicle control systems. In [17], mainly from
Ford’s perspectives, a concise review of the application-
s of MPC to vehicle control systems was provided, in
which MPC-based driver prediction control was regarded as
one of the major challenging topics. Many MPC-based or
SMPC-based methods have been used to model the driver
steering control[18,19] or driver predictive vehicle control.
These research results illustrated that the moving horizon
characteristic of MPC was consistent with the driver’s driving
process, and it could be used to mimic the driver’s driving
behavior effectively. In our previous researches [20, 21],
several SMPC-based driver steering behavior models were
presented, mainly from the assumption that the driver has
the abilities of extracting the desired path, perception of
the road friction, cognition of vehicle dynamics. In these
studies, the longitudinal velocity of vehicle was assumed as a
constant one. In fact, the driver need accelerate or decelerate
the vehicle to adjust a suitable velocity, and there may have
many uncertainties in this process, for example, the state
information of leading car.

In this paper, a novel HMM-based modeling method of
driver’s car-following behavior with moving horizon opti-
mization idea is presented, which can effectively capture
and integrate the stochastic properties of driver’s driving
process. Our goal is to present a probabilistic receding
horizon framework to understand the driver’s driving process,
and then to mimic the driver’s behavior accurately.

The remainder of this paper is organized as follows.
Section II presents the relation between the driver’s driving
process and HMM. Section III formulates the modeling
method of driver’s car-following behavior in detail. Section
IV presents the simulations using NGSIM data. Section V
concludes the study.

II. ANALYSIS OF DRIVER’S DRIVING INTENTION AND

HMM

In this section, we first describe the definitions of stochas-
tic process and Markov stochastic process, and then analyze
the relation between the driver’s driving intention and HMM.

Definition 1: For any parameter t ∈ T, S(t, ω) denotes
as a random variable, and the family of random variables
ST = {S(t, ω)} is a stochastic process.

Definition 2: If for any t1 < t2 · · · < tNS
< t; si, i =

1, 2, · · · , NS , the stochastic process {St, t ∈ T } satisfies the
following condition:

P (St = si|St1 = s1, St2 = s2, · · · , StNS
= sNS

)

= P (St = si|StNS
= sNS

) (1)

then the stochastic process {St, t ∈ T } is called a Markov
stochastic process.

The HMM λ = (A,B,Π) is one kind of Markov model,
its schematic diagram is shown in Fig.1. Normally, the
state variables {Si, i = 1, 2, · · · , NS} can not be observed
directly, which are the hidden ones in the Markov model.
These state variables have the Markov property and can be
reflected by the observable outputs {Oj , j = 1, 2, · · · , NO}.
The probability transition matrix A = {aij} describes the
transition probability of hidden states in HMM. The term
aij = P (St+1 = j|St = i), i, j = 1, 2, · · · , NS represents
the probability of state St = i at the time t transferred to
state St+1 = j at the time t+1, NS is the number of hidden
states. The output probability transition matrix B = {bij}
describes the relation between the observable outputs and
the hidden states. The term bij = P (Ot = i|St = j), i =
1, 2, · · · , NS , j = 1, 2, · · · , NO represents the probability of
observable output Ot = i when the hidden state is St = j

at the time t, NO is the number of observable outputs.
Π = (P (S0 = 1), P (S0 = 2), · · · , P (S0 = NS)) is the
probability distribution of hidden states at the initial time.
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Fig. 1. Schematic of hidden Markov model.

Due to the impact of road condition, traffic information,
weather and other factors, the driver’s driving behavior is
usually uncertain and time-varying. According to definition
1, the stochastic sequence of driver’s driving behavior is a
stochastic process. Further on the basis of theorem 1 and
the results of Yang and Jost in [8, 9], the driver’s driving
behavior is described as a stochastic process with the Markov
property.

Theorem 1: Suppose the stochastic process of driver’s
driving behavior {St, t ≥ 0} satisfies:

(i) St = f(St−1, ξt), (t ≥ 1), with f : I1 × I2 → I1,
I1 = {i0, i1, · · · , it, · · · }, the value of ξt is in the set
I2;

(ii) Stochastic process {ξt, t ≥ 1} is used to model the
traffic uncertain information which would affect the
driver’s intention;

(iii) Suppose {ξt, t ≥ 1} are independent and identically
distributed random variables, and S0 is independent
with {ξt, t ≥ 1}.

Then {St, t ≥ 1} has the Markov property, and its one-
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step transition probability is

aij = P (f(i, ξ1) = j). (2)
Proof: Due to random variable ξt+1 is independen-
t with S0, S1, · · · , St, then

P (St+1 = it+1|S0 = i0, · · · , St = it)

= P (f(St, ξt+1) = it+1|S0 = i0, · · · , St = it)

= P (f(it, ξt+1) = it+1|S0 = i0, · · · , St = it)

= P (f(it, ξt+1) = it+1). (3)

Similarly, it has

P (St+1 = it+1|St = it) = P (f(it, ξt+1) = it+1). (4)

Therefore, it can deduce that

P (St+1 = it+1|S0 = i0, · · · , St = it)

= P (St+1 = it+1|St = it) (5)

which means {St, t ≥ 0} is a Markov stochastic process,
and the one-step transition probability is (2). 2

From theorem 1, it can be deduced that the driver’s driving
behavior has the Markov property, however, the driver’s
car-following behavior within vehicles can not be observed
directly, they could be reflected by observable outputs, such
as spacing or time headway. Here, spacing[11] is defined as
“the distance, in feet, between two successive vehicles in a
traffic lane, measured from the same common feature of the
vehicles”, it is shown in Fig. 2. Time headway[11] is defined
as “the time, in seconds, between two successive vehicles
as they pass a point on the roadway, measured from the
same common feature of both vehicles”. Time headway is
represented by the mathematical symbol

Th =
xl − xf

vf
(6)

where Th is the time headway, xl is the displacement of
leading car, xf is the displacement of following car, and
vf is the velocity of the following car.

Through the above analysis, the relation between the
driver’s car-following behavior and spacing/time headway,
is consistent with the theory of HMM. In the following, we
will discuss the modeling method to mimic the driver’s car-
following behavior based on HMM.

Vehicle spacing

Fig. 2. Schematic of spacing and time headway between two consecutive
vehicles.

III. DESIGN OF DRIVER’S CAR-FOLLOWING BEHAVIOR

MODEL

By observing front vehicle’s states, host vehicle driver
could obtain the information of spacing and time headway.
Meanwhile, according to the current states of host vehicle
and driving experiences, the driver has the ability of predict-
ing the future states of host vehicle. To track the expected
spacing and time headway, the driver will decide how to
operate the vehicle in a sense of optimization. When the
states of the front vehicle and host vehicle are updated,
the driver will repeat the above process. Therefore, driver’s
car-following behavior has the moving horizon optimization
characteristic, and the structure of based on HMM and MPC
modeling method is given in Fig. 3.
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Fig. 3. HMM-based driver’s car-following behavior modeling framework.

In the proposed modeling framework, preview and percep-
tion module is used to mimic the driver’s behavior to perceive
and estimate the desired spacing or time headway. Trajectory
prediction module is mainly used to simulate the driver’s
ability of predicting the future trajectories of the vehicle,
based on their own driving experiences and the current state
of the vehicle. Optimization module is used to mimic the
driver’s control action which is generated by tracking the
expected spacing or time headway. When the states of two
vehicles reach the new ones, by moving horizon process of
above modules, the objective of simulating the driver’s car-
following behavior is achieved.

A. HMM-based driver’s driving behavior model

In this research, it is assumed that the driver does not
steer the vehicle, but manipulate the accelerator pedal or
brake pedal to change the vehicle’s states. The continuous
variable of longitudinal acceleration ax can be selected to
depict the driver’s car-following behavior. However, from the
discussion of Section II, the driver’s car-following behavior
can be simulated by HMM, which is the discrete random
variable. To solve this problem, a method of discretization
the interval of longitudinal acceleration is proposed. Specif-
ically, assuming that the expected longitudinal acceleration
of vehicle is in the interval [axmin

, axmax
]. By selecting the

number of partition NS , the interval [axmin
, axmax

] can be
divided into NS subintervals. Here, NS is corresponding to
the number of hidden states in HMM. When the desired
longitudinal acceleration is optimized and located in the i-th
subinterval [axi−1

, axi
), then the driver’s driving behavior

is related to the index S = i. Obviously, the larger the
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number of selected partition NS , the more denser the parti-
tion [axmin

, axmax
]. Thus, the description of driver’s driving

behavior will become more accurate.
Based on the above discretization method, assume that the

probability distribution Π = (pi) is

P (St = i) = pi, i = 1, 2, · · · , NS , (7)

where p1 + p2 + · · ·+ pNS
= 1.

The probability of a driver’s driving behavior is transferred
from one state to another could be depicted by the probability
transition matrix ANS×NS

A =











a11 a12 · · · · · · a1NS

a21 a22 · · · · · · a2NS

...
... · · · · · ·

...
aNS1 aNS2 · · · · · · aNSNS











(8)

where aij = P (St+1 = j|St = i) represents the probability
that the longitudinal acceleration of vehicle is transferred
from the i-th interval [axi−1

, axi
) at the time t, to the j-th

interval [axj−1
, axj

) at the time t+ 1.
Though the driver’s driving behavior within the car can

not be observed, it could be represented by spacing or
time headway. In this paper, the time headway is chosen
as the observable output state. This is because, from eq.
(6), the information of time headway contains not only the
spacing of two vehicles, but also the longitudinal velocity of
vehicle. Similarly, the above discretization method is applied
to divide the interval [Thmin

, Thmax
] into NO subintervals.

Here, NO is the same as the number of observable output
states in HMM. That the expected time headway Th is in
the i-th interval [Thi−1

, Thi
) implies the current output state

is O = i.
In our research, the conditional probability bij = P (Ot =

i|St = j) is adopted to describe the relation between
driver’s behavior and time headway. The conditional proba-
bility bij represents the probability that the driver’s driving
behavior at the time t is in the j-th interval [axj−1

, axj
),

and the output state of time headway is in the i-th inter-
val [Thi−1

, Thi
). Moreover, the probability transition ma-

trix BNO×NS
of output states is defined by

B =











b11 b12 · · · · · · b1NS

b21 b22 · · · · · · b2NS

...
... · · · · · ·

...
bNO1 bNO2 · · · · · · bNONS











(9)

Above all, the process of applying HMM λ = (A,B,Π) to
mimic the driver’s driving intention could be depicted as

Sk+1 = ASk (10a)

Ok = BSk (10b)

where
Sk = (Sk1, Sk2, · · · , SkNS

)T , (11)

Ok = (Ok1, Ok2, · · · , OkNO
)T . (12)

B. Modeling the driver’s preview, prediction and optimiza-
tion behavior

Preview: In the process of car-following, the driver has the
ability to observe and perceive the traffic information. To pre-
vent collision with the leading car, driver usually maintains a
safe distance from the leading one. From the driver’s abilities
of preview and perception, the expected sequence of time
headway (Thd

(k + 1), Thd
(k + 2), · · · , Thd

(k +Np)) can
be obtained, where Np represents the number of preview
points.

Prediction: Meanwhile, based on their own driving expe-
riences and the current states of vehicle, the driver has the
ability to predict the future states of the vehicle within a
period of time. From (10) and the current states of vehicle,
the predicted output sequence is

Op(k) = (Opk+1
,Opk+2

, · · · ,Opk+Np
) (13)

where Opk+i
= BSk+i = BAiSk, i = 1, 2, · · · , Np.

Optimization: In order to track the expected time headway
between two vehicles, the driver needs to find the most
probable sequence of desired events, which is the sequence
of hidden states (equivalent to longitudinal acceleration).
In this research, when the HMM λ = (A,B,Π) has been
established, the Viterbi algorithm is utilized to generate the
sequence of driver’s driving behavior, and then to track the
expected time headway. The formed optimization problem is
as follows:

Problem 1:

max
S(k)∈S

P (S(k) | Op(k) = Od(k)) (14a)

Subject to:

{

Sk+1 = ASk

Ok = BSk
(14b)

where, S(k) = (Sk+1, Sk+2, · · · , Sk+Np
) is the sequence of

driver’s driving behavior which is to be optimized (equiv-
alent to the control input sequence of vehicle), Od(k) =
(Odk+1

,Odk+2
, · · · ,Odk+Np

) represents the expected output
sequence, which is also the sequence of the expected time
headway.

According to Bayes formula

P (S(k) | Od(k)) =
P (S(k))P (Od(k)|S(k))

P (Od(k))
(15)

actually, there is no relation between the value of the
conditional probability P (S(k) | Od(k)) and the value
of P (Od(k)), when the expected output sequence Od(k) is
known. Therefore, the maximum value of the conditional
probability P (S(k) | Od(k)) could be equivalent to the
maximum value of the following function

V (S(k)) = P (S(k))P (Od(k)|S(k)). (16)

Next, we will describe the process of solving Problem 1.
(a) When Np = 1, define

Vk+1 = P (Sk+1)P (Odk+1
|Sk+1), (17)

then
S
∗
k+1 = argmax

Sk+1∈S

Vk+1. (18)

117



(b) When Np = 2, define

Vk+2 = P (Sk+1, Sk+2)P (Odk+1
,Odk+2

|Sk+1, Sk+2)

= P (Odk+2
| Sk+2)P (Sk+2 | Sk+1)×

P (Sk+1)P (Odk+1
| Sk+1)

= P (Odk+2
| Sk+2)P (Sk+2 | Sk+1)Vk+1, (19)

then
(S∗k+1, S

∗
k+2) = argmax

(Sk+1,Sk+2)∈S

Vk+2 (20)

...

(c) When Np = Np, define

Vk+Np
= P (S(k))P (Od(k) | S(k)) (21)

= P (Odk+Np
| Sk+Np

)P (Sk+Np
| Sk+Np−1)Vk+Np−1

then

(S∗k+1, · · · , S
∗
k+Np

) = argmax
(Sk+1,··· ,Sk+Np)∈S

Vk+Np
(22)

IV. SIMULATION OF DRIVER’S CAR-FOLLOWING

BEHAVIOR

In this part, the closed-loop responses of certain typical
drivers are analyzed and studied by applying the HMM-based
moving horizon optimization method. Here, the vehicles with
ID numbers 94, 680, 1084, 2019 from the Next Generation
Simulation (NGSIM) trajectory data are chosen as the cases
to study.

Note that HMM is a discrete process, the optimized
sequence of driver’s driving behavior would be a series
of discrete values. Though the range of driver’s driving
behavior is known from this interval, the accurate value of
longitudinal acceleration which is acted directly on vehicle
can not be obtained. Here, a stochastic approximation method
is adopted. Specifically, if the first element of optimized
driving intention sequence at the time k is i, which means
the value of longitudinal acceleration is in the i-th interval
[axi−1

, axi
), then the random value which is used to taken

as the current longitudinal acceleration, is given below:

ax(k) = (axi
− axi−1

)× rand(1) + axi
(23)

where rand(1) represents the uniform random number in the
interval [0, 1].

Remark 4.1: It seems that the value of vehicle longitu-
dinal acceleration obtained from (23) may be any one in
the interval [axi−1

, axi
). So it will lead to certain deviation

from the real value. As the number of partition increases,
the range of each interval will be smaller, to a certain extent,
the deviation may be reduced. However, when the selected
number of partition is too much, the dimensions of state
probability distribution, state probability transition matrix
and output probability transition matrix will be also larger.
This may affect not only the speed of calculation, but also
the regularity of data distribution. At present, the proposed
modeling method of driver’s car-following behavior can not
completely eliminate this deviation.

A detailed division of vehicle longitudinal acceleration
and time headway for the four typical vehicles is made. The
results are shown in Table I. After this division, according
to Baum-Welch algorithm, the probability distribution Π,
probability transition matrix A and output probability tran-
sition matrix B of vehicle longitudinal acceleration can be
calculated.

TABLE I

DIVISION OF VEHICLE LONGITUDINAL ACCELERATION AND TIME

HEADWAY

ID ax (m/s2) NS Th (s) NO N
94 [−0.32, 0.4] 36 [1, 12] 22 791

1084 [−0.32, 0.48] 40 [1, 12] 22 658
2019 [−0.32, 0.26] 58 [0.5, 3] 25 1183
680 [−0.37, 0.17] 54 [0.95, 2.45] 30 754

For the proposed HMM-based driver’s car-following be-
havior model, the closed-loop response curves of four typical
vehicles can be obtained. Comparison results of vehicle
longitudinal velocity between the simulation one and the real
one are shown in Figs.4-7. The blue solid line shows the real
data, and the red dotted line represents the simulation one.
It can be seen from the comparison results, no matter the
vehicle is in the acceleration phase or deceleration phase,
the red dotted lines are able to track the main tendency of
the blue solid lines, and the consistency is relatively well.
These indicate that the proposed HMM-based driver’s car-
following behavior model could mimic the driving process
of real driver accurately.

There may be three main reasons for the deviation between
the simulation and recorded data:

(1) In the recorded data, the sample points contained in
the data set of individual trajectory are relatively small, the
most one has only 1183 groups;

(2) In the process of interval division and the restoration
of vehicle longitudinal acceleration, there exists certain de-
viations inevitably;

(3) The Viterbi optimization algorithm is an optimization
process which is maximizing the posterior probability, this
leads to the obtained results are only the optimal one in the
probabilistic sense.
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Fig. 4. Comparison results of simulation and actual longitudinal velocity
for ID 94 vehicle.
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Fig. 5. Comparison results of simulation and actual longitudinal velocity
for ID 1084 vehicle.
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Fig. 6. Comparison results of simulation and actual longitudinal velocity
for ID 2019 vehicle.
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Fig. 7. Comparison results of simulation and actual longitudinal velocity
for ID 680 vehicle.

V. CONCLUSIONS

In this research, we developed a modeling framework
with moving horizon optimization characteristic to mimic
driver’s car-following behavior, and presented a novel HMM-
based modeling method. The driver’s driving process has
the Markov property was proven. Analysis and simulation
results of longitudinal velocity data for typical driver’s car-
following behavior were provided, and the performance of
the proposed modeling method was illustrated by multiple
groups of comparisons. From our research, it seems that the
HMM-based moving horizon optimization modeling method
is a feasible and effective one, which could effectively
mimic driver’s driving process, and it may also provide
new insights into better understanding of the driver’s car-
following behavior.
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